Article ID Journal Published Year Pages File Type
1280800 International Journal of Hydrogen Energy 2007 11 Pages PDF
Abstract

Chemical kinetics in hydrogen combustion for elevated pressures have recently become more relevant because of the implementation of hydrogen as a fuel in future gas turbine combustion applications, such as IGCC or IRCC systems. The aim of this study is to identify a reaction mechanism that accurately represents H2/O2 kinetics over a large range of conditions, particularly at elevated pressures as present in a gas turbine combustor. Based on a literature review, six mechanisms of different research groups have been selected for further comparisons within this study. Reactor calculations of ignition delay times show that the mechanisms of Li et al. and Ó Conaire et al. yield the best agreement with data from shock tube experiments at pressures up to 33 bar. The investigation of one-dimensional laminar hydrogen flames indicate that these two mechanisms also yield the best agreement with experimental data of laminar flame speed, particularly for elevated pressures. The present study suggests that the Li mechanism is best suited for the prediction of H2/O2 chemistry since it includes more up-to date data for the range of interest.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, ,