Article ID Journal Published Year Pages File Type
1280850 International Journal of Hydrogen Energy 2014 13 Pages PDF
Abstract

•PBxCO (0.90 ≤ x ≤ 1.0) cathodes show the low ASRs of 0.042–0.1 Ω cm2 at 600 °C.•PB0.94CO shows the promising polarization performance compared to LSCF cathode.•Rate-limiting step for ORR in PB0.94CO cathode changes with decreasing temperature.

The layered perovskite PrBaxCo2O5+δ (PBxCO, x = 0.90–1.0) oxides have been synthesized by a solid-state reaction technique, and evaluated as the potential cathode materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs). Room temperature X-ray diffraction patterns show the orthorhombic structures which double the lattice parameters from the perovskite cell parameter as a ≈ ap, b ≈ ap and c ≈ 2ap (ap is the cell parameter of the primitive perovskite) in the Pmmm space group. There is a good chemical compatibility between the PBxCO cathode and the Ce0.9Gd0.1O1.95 (CGO) electrolyte at 1000 °C. The electrical conductivity and thermal expansion coefficient of PBxCO are improved due to the increased amount of electronic holes originated from the Ba-deficiency. The results demonstrate the high electrochemical performance of PBxCO cathodes, as evidenced by the super low polarization resistances (Rp) over the intermediate temperature range. The lowest Rp value, 0.042 Ω cm2, and the cathodic overpotential, −15 mV at a current density of −25 mA cm−2, are obtained in the PrBa0.94Co2O5+δ cathode at 600 °C in air, which thus allow to be used as a highly promising cathode for IT-SOFCs. A CGO electrolyte fuel cell with the PrBa0.94Co2O5+δ cathode presents the attractive peak power density of ∼1.0 W cm−2 at 700 °C. Furthermore, the oxygen reduction kinetics of the PrBa0.94Co2O5+δ cathode is also studied, and the rate-limiting steps for oxygen reduction reaction are determined at different temperatures.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , , , ,