Article ID Journal Published Year Pages File Type
1280856 International Journal of Hydrogen Energy 2014 21 Pages PDF
Abstract

•Customized – chemical kinetics model developed.•Noble–Abel consistent material properties and chemical kinetic parameters.•Results show relationships between local flow and reaction characteristics.•Results indicate importance of use of equation of state appropriate to conditions.•Findings can be applied to hydrogen escape studies for improved predictions.

This work involves the investigation of the sensitivity of computational fluid dynamics based models of auto ignition of hydrogen gas escaping into the surroundings to the use of an ideal gas and a real gas Noble–Abel equation of state. Ensuring consistent modeling techniques when the real gas equation of state is implemented, real gas based thermodynamic properties, real gas based property mixture models, and real gas based chemical equilibrium constant formulations are utilized. Within the standard computational fluid dynamics models, a customized chemical kinetic equation integrator is employed. An LES based turbulence model is implemented. For tank pressures of 40, 80, and 120 MPa, differences in the gas conditions, including gas pressures, temperatures, velocities, flow rates, energy, and chemical species mass fractions, are compared. The relationships between the local and time varying gas conditions, chemical reaction indicators, the tank pressure, and the equation of state captured in the simulations are described in detail. The results clearly show the increasing deviation between the ideal gas and Noble–Abel based results as the tank pressure increases, indicating the importance of the use of the proper material model and chemical equilibrium formulation for the conditions of interest.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
,