Article ID Journal Published Year Pages File Type
1280885 International Journal of Hydrogen Energy 2014 9 Pages PDF
Abstract

•Methanol steam reforming was performed in a composite Pd-based membrane reactor.•High-grade hydrogen is produced from MSR in a Pd/Al2O3 MR with CO content <10 ppm.•Methanol steam reforming was performed at low temperature.

In this experimental study, a membrane reactor housing a composite membrane constituted by a thin Pd-layer supported onto Al2O3 is utilized to perform methanol steam reforming reaction to produce high-grade hydrogen for PEM fuel cell applications. The influence of various parameters such as temperature, from 280 to 330 °C, and pressure, from 1.5 to 2.5 bar, is analyzed. A commercial Cu/Zn-based catalyst is packed in the annulus of the membrane reactor and the experimental tests are performed at space velocity equal to 18,500 h−1 and H2O:CH3OH feed molar ratio equal to 2.5:1. Results in terms of methanol conversion, hydrogen recovery, hydrogen yield and products selectivities are given. As a best result of this work, 85% of methanol conversion and a highly pure hydrogen stream permeated through the membrane with a CO content lower than 10 ppm were reached at 330 °C and 2.5 bar. Furthermore, a comparison between the experimental results obtained in this work and literature data is proposed and discussed.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,