Article ID Journal Published Year Pages File Type
1281563 International Journal of Hydrogen Energy 2008 10 Pages PDF
Abstract

Solid-oxide fuel cells (SOFCs) are particularly attractive since they offer clean and efficient decentralized electricity generation and can be incorporated into hybrid systems with CHP capabilities. However, small scale SOFC systems operated with hydrocarbon fuels require external reforming. A very promising reforming technology involves partial oxidation (POX) in an inert porous material (T-POX reformer). The present work provides extensive numerical simulation of a prototype T-POX reformer operating with methane. Computations are performed using a reactor network approach incorporating full detailed chemistry and results are successfully compared against experimentally determined hydrocarbon species data. Computational results are further used to identify the elementary kinetic pathways for hydrocarbon fuel partial oxidation, molecular growth and pollutant formation as well as to identify optimum reformer operating conditions.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , ,