Article ID Journal Published Year Pages File Type
1281597 International Journal of Hydrogen Energy 2013 12 Pages PDF
Abstract

•Developed a network based optimization model to optimize pin-type design.•Improved the optimization model by taking account of reactant consumption.•Fuel cell simulation results verified the developed optimization model.•The optimized designs significantly enhanced the PEM fuel cell performance.

The flow field of a bipolar plate distributes reactants for polymer electrolyte membrane (PEM) fuel cells and removes the produced water from the fuel cells. It greatly influences the performance of fuel cells, especially the concentration losses. Pin-type design, as one of the widely utilized flow field configurations, has the advantage of low pressure drop but the disadvantage of uneven flow distribution and stagnant areas. In this paper, a network-based optimization model was developed to optimize the pin-type flow field configuration. Two optimization cases, uniform flow distribution with and without considering reactant consumption along flow channels, were investigated and the corresponding optimized designs were developed. Three-dimensional numerical simulations of PEM fuel cell were conducted to validate the proposed optimization model and also to compare the performance of the fuel cells using the optimized designs and the regular pin-type design. The numerical results verified the designs generated with the present optimization model. Both the optimized designs exhibited substantially higher fuel cell performance compared to the regular pin-type configuration. Moreover, the optimized design with considering reactant consumption performed even better than the one without considering the consumption, emphasizing the significance of reactant consumption in the flow field optimization model.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,