Article ID Journal Published Year Pages File Type
1281809 International Journal of Hydrogen Energy 2007 9 Pages PDF
Abstract

Hydrogen can be readily used in spark ignition engines as a clean alternative to fossil fuels. However, the higher burning velocity and shorter quenching distance of hydrogen compared with hydrocarbons cause a larger heat transfer from the burning gas to the combustion chamber walls. Because of this cooling loss, the thermal efficiency of hydrogen-fueled engines is sometimes lower than that of conventionally fueled engines. Therefore, reducing the cooling loss is a crucial element in improving the thermal efficiency of hydrogen combustion engines. Previous research by the author and others has proposed the direct injection stratified charge as a technique for reducing the cooling loss in hydrogen combustion and shown its effect in reducing cooling loss through experiments in a constant volume combustion vessel. However, it is known that a reduction in cooling loss does not always improve thermal efficiency due to a simultaneous increase in the exhaust heat loss. This paper explains the relation between cooling loss reduction and thermal efficiency improvements by the direct injection stratified charge in hydrogen combustion engines.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
,