Article ID Journal Published Year Pages File Type
1281901 International Journal of Hydrogen Energy 2007 8 Pages PDF
Abstract

A major degradation mechanism in solid oxide fuel cells (SOFCs) is poisoning of the cathode by chromium from volatilization of the interconnect material. The chromium deposition has been attributed to both chemical and electrochemical mechanisms. For an electrochemical reaction, deposition can occur only where both ions and electrons are available, which, for a purely ionic conducting electrolyte and a purely electronic conducting cathode, can occur only at the three-phase gas–electrolyte–electrode interface. However, the introduction of ionic conductivity into the cathode or electronic conductivity into the electrolyte can allow deposition to occur away from this three-phase interface, and thus alter its effect on the fuel cell performance. In this paper, the chromium poisoning of SOFC cathodes is reviewed, with a focus on the effects of the transport properties of the cathode and electrolyte materials.

Keywords
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
,