Article ID Journal Published Year Pages File Type
1282022 International Journal of Hydrogen Energy 2006 12 Pages PDF
Abstract

Biological production of hydrogen gas has received increasing interest from the international community during the last decade. Most studies on biological fermentative hydrogen production from carbohydrates using mixed cultures have been conducted in conventional continuous stirred tank reactors (CSTR) under mesophilic conditions. Investigations on hydrogen production in reactor systems with attached microbial growth have recently come up as well as investigations on hydrogen production in the thermophilic temperature range. The present study examines and compares the biological fermentative production of hydrogen from glucose in a continuous stirred tank type bioreactor (CSTR) and an upflow anaerobic sludge blanket bioreactor (UASB) at various hydraulic retention times (2–12 h HRT) under mesophilic conditions (35 °C). Also the biohydrogen production from glucose in the CSTR at mesophilic and thermophilic (55 °C) temperature range was studied and compared. From the CSTR experiments it was found that thermophilic conditions combine high hydrogen production rate with low production of microbial mass, thus giving a specific hydrogen production rate as high as 104 mmole H2/h/l/gH2/h/l/g VSS at 6 h retention time compared to a specific hydrogen production rate of 12 mmole H2/h/l/gH2/h/l/g VSS under mesophilic conditions. On the other hand, the UASB reactor configuration is more stable than the CSTR regarding hydrogen production, pH, glucose consumption and microbial by-products (e.g. volatile fatty acids, alcohols etc.) at the HRTs tested. Moreover, the hydrogen production rate in the UASB reactor was significantly higher compared to that of the CSTR at low retention times (19.05 and 8.42 mmole H2/h/lH2/h/l, respectively at 2 h HRT) while hydrogen yield (mmole H2/mmoleH2/mmole glucose consumed) was higher in the CSTR reactor at all HRT tested. This implies that there is a trade-off between technical efficiency (based on hydrogen yield) and economic efficiency (based on hydrogen production rate) when the attached (UASB) and suspended (CSTR) growth configurations are compared.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,