Article ID Journal Published Year Pages File Type
1282023 International Journal of Hydrogen Energy 2006 6 Pages PDF
Abstract

In order to improve the hydrogen storage properties and reduce the cost of Ti–V-based BCC alloys, the effect of Fe substitution for part V on hydrogen absorption–desorption characteristics of Ti–10Cr–18Mn–32V alloy was investigated. It was found that proper amount of Fe addition was effective in improving the activation performance, enhancing the hydrogen absorption–desorption plateau pressure, reducing the hysteresis of hydrogen absorption–desorption plateau, increasing the hydrogen desorption capacity and decreasing the alloy's cost, while it depressed the hydrogen absorption capacity. X-ray diffraction (XRD) patterns and back scattering electron (BSE) images display that the single BCC phase of Fe-free alloy transformed into two phases of, BCC and C14 Laves, of Fe-containing alloy. Three phase transformations happened in the two alloys during the hydrogen release process, which resulted from the formation of three different hydride phases in the two hydrided alloys.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , ,