Article ID Journal Published Year Pages File Type
1282113 International Journal of Hydrogen Energy 2012 8 Pages PDF
Abstract

Biohydrogen production processes were investigated using thermophilic bacterial consortia enriched from sludge of the anaerobic digester. A multiple parameter optimization viz. temperature, pH and substrate concentration was performed for maximization of hydrogen production. Heat shock pre-treatment followed by BES (2-bromo ethane sulfonate) treatment was done for the enrichment of hydrogen producing bacteria. Box–Behnken design and response surface methodology were adopted to investigate the mutual interaction among the process parameters. Experimental optimization of process parameters (60 °C, pH 6.5 and 10 g/L) gave the maximum hydrogen production and yield of 3985 mL/L and 2.7 mol/mol glucose respectively in the batch system which is higher than the reported value on UASB. These experimental parameters found concurrent with the values obtained from the theoretical model i.e. 58.4 °C, pH 6.6, 10.8 g/L and yield of 2.71 mol/mol glucose. At optimized conditions, maximum hydrogen production rate (Rm) of 850 mL/h, gas production potential (P) of 4551 mL/L and lag time (λ) of 1.98 h were determined using modified Gompertz equation. Using the optimum conditions, hydrogen production from rice spent wash was conducted in which hydrogen yield of 464 mL/g carbohydrate and hydrogen production rate of 168 mL/L h were obtained. PCR-DGGE profile showed that the thermophilic mixed culture was predominated with species closely affiliated to Thermoanaerobacterium sp.

► To study the suitability of thermophilic mixed culture for H2 production. ► Box–Behnken design to find out the mutual interaction of different parameters. ► Study of kinetics of hydrogen production by modified Gompertz equation. ► DGGE for determining microbial species present in the thermophilic mixed culture. ► Comparative studies with the reported thermophilic cultures.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,