Article ID Journal Published Year Pages File Type
1282665 International Journal of Hydrogen Energy 2011 12 Pages PDF
Abstract

In this paper, a novel bayonet tube high temperature heat exchanger (HTHE) with inner and outer fins is presented. It can be used in the ultra high temperature environment, such as hydrogen production, very high temperature reactor and externally fired combined cycle. Numerical investigation of heat transfer performance on the inside of bayonet element has been conducted for structure design. The numerical results suggest that the inner fin and inner tube should not be welded together. It is recommended that the air enters from the inner tube and exits from the annular space in the high temperature zone. A high temperature experimental system has been established to test the heat transfer and pressure drop characteristics of the HTHE. The surface area density of the tested HTHE is 6 times higher than that of the bare bayonet tube heat exchanger. The experimental results indicate that the mass flow rate on both sides and inlet temperature on the fuel gas side have a significant effect on the heat transfer rate and effectiveness, while the pressure drop ratios are mainly affected by the mass flow rate rather than the inlet temperature. Comparison between the tested HTHE and the similar HTHE without fins indicates that the proposed HTHE has a significant potential to improve the comprehensive heat transfer performance.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , ,