Article ID Journal Published Year Pages File Type
1282749 International Journal of Hydrogen Energy 2010 7 Pages PDF
Abstract
Effects of the Mn substitution on microstructures and hydrogen absorption/desorption properties of LaNi3.8Al1.2−xMnx (x = 0.2, 0.4, 0.6) hydrogen storage alloys were investigated. The pressure-composition (PC) isotherms and absorption kinetics were measured in a temperature range of 433 K ≤ T ≤ 473 K by the volumetric method. XRD analyses showed that with the increase of the Mn content in the LaNi3.8Al1.2−xMnx alloys, the lattice parameter a was decreased, c increased and the unit cell volume V reduced. It was found that the absorption/desorption plateau pressure was increased and the hydrogen storage capacity was enhanced with the increase of Mn content. The absorption/desorption plateau pressure of the alloys was linearly changed with the Mn content x and the lattice parameter a, while the hydrogen storage capacity was linearly increased with the increase of c/a ratio. It was also found that the slope factor Sf was closely correlated with the lattice strain of the alloys.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , ,