Article ID Journal Published Year Pages File Type
12830 Biomaterials 2005 11 Pages PDF
Abstract

This study compared a high-power light-emitting-diode (LED) curing light (FreeLight 2, 3M ESPE) with a quartz-tungsten-halogen (QTH) light (TriLight, 3M ESPE) to determine which was the better at photo-polymerising 10 resin composites. Class I preparations were prepared 4-mm deep into human teeth and filled with 10 different composites. The composites were irradiated for 50% or 100% of their recommended times using the LED light, and for 100% of their recommended times with the QTH light on either the high or medium power setting. Fifteen minutes later, the Knoop hardness of the composites was measured to a depth of 3.5 mm from the surface.When irradiated by the LED light for their recommended curing times, the Knoop hardness of all 10 composites stayed above 80% of the maximum hardness of the composite to a depth of at least 1.5 mm; three composites maintained a Knoop hardness that was more than 80% of their maximum hardness to a depth of 3.5 mm. Repeated measurements analysis of variance indicated that all the two-way and three-way interactions between the curing light, depth, and composite were significant (p<0.01). To eliminate the choice of composite as a factor, an overall comparison of the lights was performed using the Kruskal–Wallis test and distribution free multiple comparisons of the ranked hardness values. The LED light, used for the composite manufacturer's recommended time, was ranked the best at curing the composites to a depth of 3 mm (p<0.01). The LED light used for 50% of the recommended time was not significantly different from the QTH light used for 100% of the recommended time on the high power setting.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , ,