Article ID Journal Published Year Pages File Type
1283009 International Journal of Hydrogen Energy 2009 7 Pages PDF
Abstract

We report on PtxNi1−x (x = 0, 0.35, 0.44, 0.65, 0.75, and 0.93) nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane (NH3BH3). The PtxNi1−x catalysts were prepared through a redox replacement reaction with a reverse microemulsion technique. The structure, morphology, and chemical composition of the obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) equipped with energy dispersive X-ray (EDX), and inductively coupled plasma emission spectroscopy (ICP). The results show that the diameters of the PtxNi1−x nanoparticles are about 2–4 nm, and the Pt atomic contents in the catalysts were 35%, 44%, 65%, 75%, and 93%, respectively. It is found that the catalytic activity toward the hydrolysis of NH3BH3 is correlated with the composition of the PtxNi1−x catalysts. The annealing of Pt0.65Ni0.35 at 300 °C for 1 h increases the crystallinity of the nanoparticles, but shows almost the same activity as that without annealing. Among the as-prepared PtxNi1−x nanoparticles, Pt0.65Ni0.35 displays the highest catalytic performance, delivering a high hydrogen-release rate of 4784.7 mL min−1 g−1 and a low activation energy of 39.0 kJ mol−1.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , ,