Article ID Journal Published Year Pages File Type
1283478 International Journal of Hydrogen Energy 2009 14 Pages PDF
Abstract

In the present work, hydrogen generation through hydrolysis of a NaBH4(s)/catalyst(s) solid mixture was realized for the first time as a solid/liquid compact hydrogen storage system using Co nanoparticles as a model catalyst. The performance of the system was analysed from both the thermodynamic and kinetic points of view and compared with the classical catalyzed hydrolysis of a NaBH4 solution. The kinetic analysis of the NaBH4(s)/catalyst(s)/H2O(l) system shows that the reaction is first order with respect to the catalyst concentration, and the activation energy equal to 35 kJ molNaBH4−1. Additionally, calorimetric measurements of the heat evolved during the hydrolysis of NaBH4 solutions evidence the global process energy (−217 kJ molNaBH4−1). Characterization of the cobalt nanoparticles before and after the hydrolysis associated with the calorimetric measurements suggests the “in situ” formation of a catalytically active CoxB phase through “reduction” of an outer protective oxide layer that is regenerated at the end of reaction.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , , , ,