Article ID Journal Published Year Pages File Type
1283538 International Journal of Hydrogen Energy 2008 9 Pages PDF
Abstract

A novel structured catalyst made up of mesoporous Co3O4 nanowire arrays (active phase) supported on a stainless steel mesh is presented. An important advantage of this catalytic system is that the formation and growth of cobalt oxide nanowires takes place on the surface of stainless steel wires. These mesoporous Co3O4 nanowires have a diameter of 500 nm, a BET surface area of 71 m2/g and a pore size of ∼3.4 nm. The catalytic behavior of this system towards the preferential oxidation of CO was investigated. To this end a microreactor was constructed consisting of a metal wire mesh-Co3O4 nanowire composite rolled and inserted into a standard ¼″ stainless steel tube. This structured catalytic system exhibits several important properties: a) a high heat exchange rate and a low pressure drop, b) a remarkable stability over the whole temperature range analyzed (100–175 °C) and c) a good catalytic activity which doubles that of the best Co3O4 catalyst previously reported. An added feature of this synthetic procedure is that it allows the simultaneous synthesis of unsupported porous Co3O4 particles (∼100 μm diameter) with slightly different characteristics to those of the supported nanowires. Catalytic tests on these particles highlighted the close relationship between the calcination temperature, the reducibility of the produced spinel and the catalytic activity during the PROX reaction.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,