Article ID Journal Published Year Pages File Type
13120 Biomaterials 2011 9 Pages PDF
Abstract

Adhesion of bacteria at the surface of implanted materials is the first step in microbial infection, leading to post-surgical complications. In order to reduce this adhesion, we show that poly(l-lysine)/poly(l-glutamic acid) (PLL/PGA) multilayers ending by several PLL/PGA-g-PEG bilayers can be used, PGA-g-PEG corresponding to PGA grafted by poly(ethylene glycol). Streaming potential and quartz crystal microbalance-dissipation measurements were used to characterize the buildup of these films. The multilayer films terminated by PGA and PGA-g-PEG were found to adsorb an extremely small amount of serum proteins as compared to a bare silica surface but the PGA ending films do not reduce bacterial adhesion. On the other hand, the adhesion of Escherichia coli bacteria is reduced by 72% on films ending by one (PLL/PGA-g-PEG) bilayer and by 92% for films ending by three (PLL/PGA-g-PEG) bilayers compared to bare substrate. Thus, our results show the ability of PGA-g-PEG to be inserted into multilayer films and to drastically reduce both protein adsorption and bacterial adhesion. This kind of anti-adhesive films represents a new and very simple method to coat any type of biomaterials for protection against bacterial adhesion and therefore limiting its pathological consequences.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , , , ,