Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1335087 | Polyhedron | 2009 | 8 Pages |
The synthesis and structural chemistry of four new divalent transition metal complexes of the fluorene ligands 4,5-diazaspirobifluorene (L1) and bis-9-biphenyl-4,5-diazafluorenyl peroxide (L2), [Cu3(L1)4(NO3)6(H2O)2] · 2CH3CN (1), [Cu(L1)(CH3CO2)2(H2O)] · 2H2O (2), [Cd(L1)2(NO3)2] · DMF (3) (DMF = N,N-dimethylformamide) and [Zn2(L2)(μ-Cl)2Cl2]∞ (4) are described. Single-crystal X-ray diffraction analysis reveal that the four complexes exhibit various frameworks due to diverse coordination modes and different conformations of ligands L1 or L2, as well as nitrate, acetate or chloro counterions. L1 in complexes 1, 2 and 3 present an asymmetric rigid bidentate ligand with two nitrogen atoms as the donor sites. Novel complex 4 was formed through complexation between conformationally bent shaped peroxide ligands and zinc(II) dichlorides that adopt a linear coordination geometry, which can also give rise to extended polymeric chains with a zigzag secondary structure.
Graphical abstractThe synthesis and structural chemistry of four new divalent transition metal complexes (MII = Cu, Cd or Zn) of the fluorene ligands 4,5-diazaspirobifluorene (L1) and bis-9-biphenyl-4,5-diazafluorenyl peroxide (L2) are reported. Single-crystal X-ray diffraction analysis reveal that the four complexes exhibit various frameworks due to diverse coordination modes and different conformations of ligands L1 or L2, as well as nitrate, acetate or chloro counterions. L1 in complexes 1, 2 and 3 present an asymmetric rigid bidentate ligand with two nitrogen atoms as the donor sites. Novel complex 4 was formed through complexation between conformationally bent shaped peroxide ligands and zinc(II) dichlorides that adopt a linear coordination geometry, which can also give rise to extended polymeric chains with a zigzag secondary structure.Figure optionsDownload full-size imageDownload as PowerPoint slide