Article ID Journal Published Year Pages File Type
1336672 Polyhedron 2010 11 Pages PDF
Abstract

Divalent copper coordination polymers containing aliphatic dicarboxylate and bis(3-pyridylmethyl)piperazine (3-bpmp) tethering ligands exhibit different topologies depending on the length of the polymethylene chain and stoichiometric ratio. {[Cu(succinate)(3-bpmp)]·8H2O}n (1) and {[Cu(adipate)(3-bpmp)(H2O)]·10H2O}n (4) both display (4,4) rhomboid grids, although the latter shows significant undulations to accommodate the additional girth of the dicarboxylate tethers. [Cu2(succinate)2(3-bpmp)0.5(H2O)]n (2) and [Cu2(glutarate)2(3-bpmp)]n (3) possess {Cu2(OCO)3} partial paddlewheel and {Cu2(OCO)4} complete paddlewheel carboxylate bridged dimeric units, respectively. However, 2 has a (6,3) brick-layered structure with a rare binodal moganite (mog) supramolecular topology, while 3 possesses a non-interpenetrated primitive cubic network. Intriguing co-crystallized water tapes are seen in 1 and 4. Thermal dehydration and decomposition behavior of 1–4 is also presented.

Graphical abstractDivalent copper coordination polymers containing aliphatic dicarboxylate and bis(3-pyridylmethyl)piperazine (3-bpmp) tethering ligands exhibit different topologies depending on the length of the polymethylene chain and stoichiometric ratio. Two of these materials possess co-crystallized water molecule tapes.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, ,