Article ID Journal Published Year Pages File Type
1336890 Polyhedron 2010 6 Pages PDF
Abstract

As part of a systematic study of mechanisms of response of semiconducting oxides as trace gas sensors, we have explored the behaviour of iron–titanium oxide solid solutions Fe2−xTixO3 (x = 0.1–1.4). The materials were single-phase for x = 0.1 with increasing proportions of a pseudobrookite second phase at higher degree of substitution. Unmodified, pure iron oxide does not show sensitivity to CO. A significant signal was developed for x = 0.1, that then diminished with increasing x and was lost for x = 1.4. Three effects have been deduced important for the gas response: significant surface segregation of Ti at low Ti content; grain growth inhibition and agglomeration into more massive, non-porous lumps as Ti content increased; and the appearance of a band-gap state associated with Fe(II) at higher Ti content. The effects of microstructure change have been analyzed by fitting the data to a simple 2-resistor model of gas-insensitive ‘grains’ in series with gas-sensitive ‘grain boundaries’. A Mars–van Krevelen type model for the response is presented, based on reactions at surface-segregated defect clusters, to develop and remove electrically-active surface trap states.

Graphical abstractSchematic of the sensor tile to measure the gas sensitivity of Fe2−xTixO3+γ (x = 0–1.4).Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , , , , ,