Article ID Journal Published Year Pages File Type
1336893 Polyhedron 2010 8 Pages PDF
Abstract

Four new silver(I) coordination polymers, namely [Ag(NH2pyz)(ox)0.5]n (1), [Ag(NH2pyz)(adp)0.5·2H2O]n (2), [Ag2(NH2pyz)2(bdc)·H2O]n (3) and [Ag2(NH2pyz)2.5(ndc)]n (4) [NH2pyz = 2-aminopyrazine, ox = oxalate anion, adp = adipate anion, bdc = 1,4-benzenedicarboxylate anion, ndc = 1,4-naphthalenedicarboxylate anion] have been synthesized by solution phase ultrasonic reactions of Ag2O with heterocyclic NH2pyz and various dicarboxylates under ammoniacal conditions. The complexes were characterized by elemental analyses, IR spectra and single-crystal X-ray diffraction. Complex 1 is a three-dimensional (3D) framework with an α-ThSi2 topology. Complex 2 features a 2D 44-sql net involving infinite 1D double Ag-NH2pyz chains and flexible adp anion spacers. Complex 3 is a 3D framework in which 1D single Ag-NH2pyz chains are pillared by bdc anions to form a 2D 63-hcb network, adjacent 2D networks are packed into a 3D framework through bridging O atoms of dbc anions. Complex 4 is a 2D structure built from infinite 1D stair-like chains containing finite Ag4(NH2pyz)5 subunits. The results show that the structural diversity of the complexes result from the nature of the dicarboxylate ligands. The photoluminescence properties of the complexes were also investigated in the solid state at room temperature.

Graphical abstractFour new silver(I) coordination polymers, namely [Ag(NH2pyz)(ox)0.5]n (1), [Ag(NH2pyz)(adp)0.5·2H2O]n (2), [Ag2(NH2pyz)2(bdc)·H2O]n (3) and [Ag2(NH2pyz)2.5(ndc)]n (4) [NH2pyz = 2-aminopyrazine, ox = oxalate anion, adp = adipate anion, bdc = 1,4-benzenedicarboxylate anion, ndc = 1,4-naphthalenedicarboxylate anion] have been synthesized by solution phase ultrasonic reactions of Ag2O with heterocyclic NH2pyz and various dicarboxylates under ammoniacal conditions. The complexes were characterized by elemental analyses, IR spectra and single-crystal X-ray diffraction. Complex 1 is a three-dimensional (3D) framework with an α-ThSi2 topology. Complex 2 features a 2D 44-sql net involving infinite 1D double Ag-NH2pyz chains and flexible adp anion spacers. Complex 3 is a 3D framework in which 1D single Ag-NH2pyz chains are pillared by bdc anions to form a 2D 63-hcb network, adjacent 2D networks are packed into a 3D framework through bridging O atoms of bdc anions. Complex 4 is a 2D structure built from infinite 1D stair-like chains containing finite Ag4(NH2pyz)5 subunits. The results show that the structural diversity of the complexes result from the nature of the dicarboxylate ligands. The photoluminescence properties of the complexes were also investigated in the solid state at room temperature.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , , , , ,