Article ID Journal Published Year Pages File Type
1337744 Polyhedron 2008 5 Pages PDF
Abstract

The present investigation reports on the novel synthesis of Mn3O4 nanoparticles using thermal decomposition and their physicochemical characterization. The Mn3O4 nanoparticle powder has been prepared using [bis(salicylidiminato)manganese(II)] as a precursor. The effect of oleyl amine and triphenylphosphine on the particle morphology has been investigated. Transmission electron microscopy (TEM) analysis demonstrated Mn3O4 nanoparticles with an average diameter of about 25 nm. The structural study by X-ray diffraction (XRD) indicates that these nanoparticles have a pure tetragonal phase. The phase pure samples were characterized using X-ray photoelectron spectroscopy (XPS) for both Mn 2p and Mn 3s levels. The values of binding energies are consistent with related values reported in the literature.

Graphical abstractThe present investigation reports on the novel synthesis of Mn3O4 nanoparticles using thermal decomposition and their physicochemical characterization. The Mn3O4 nanoparticle powder has been prepared using [bis(salicylidiminato)manganese(II)] as a precursor. The effect of oleyl amine and triphenylphosphine on the particle morphology has been investigated. Transmission electron microscopy (TEM) analysis demonstrated Mn3O4 nanoparticles with an average diameter of about 25 nm.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , ,