Article ID Journal Published Year Pages File Type
1339458 Polyhedron 2008 7 Pages PDF
Abstract

A series of mixed halide–dicyanamide and halide complexes of cadmium(II) mediated by 2-aminoalkyl-pyridine ligands [2-aminomethylpyridine (ampy) and 2-aminoethylpyridine (aepy)] have been synthesized. Five of them, [CdCl(dca)(aepy)]n (1), [CdBr(dca)(ampy)]n (2), [CdCl(dca)(ampy)]n (3) (dca = dicyanamide); [CdI2(aepy)]n (4), and [CdI2(ampy)]n (5), (dca = dicyanamide) have been characterized by X-ray single crystal structure analysis. The structural determination shows that the compounds are 1D coordination polymers, with the exception of 3 that gives origin to a 2D sheet-like network. The ampy and aepy ligands (also with the occurrence of dca anions in 1–3) reveal to be useful ancillary fragments for the construction of unprecedented Cd–halide polymeric species. The crystal packing shows that the dimensionality of all compounds is enlarged to 2D, and 3D in the case of complex 3, through π–π interactions occurring between the pyridine rings. All the species exhibit interesting luminescence property in solution as well in solid state which is originated from ligand-centered π–π∗ transitions. The fluorescence band maxima and fluorescence efficiency (in methanol) are found to be dependent not only on the pyridine ligand but also on the type of halide, and the co-ligand. Solid state luminescent study implies that π–π interactions occurring between pyridine rings are also important in controlling the fluorescence intensity. Amongst the synthesized complexes reported, complex 5 exhibits the highest fluorescence efficiency in methanol.

Graphical abstractA series of mixed halide–dicyanamide and halide complexes of cadmium(II) mediated by 2-aminoalkyl-pyridine ligands [2-aminomethylpyridine (ampy) and 2-aminoethylpyridine (aepy)] have been synthesized and characterized. Although CdX2, dca and the two py-ligands are not luminescent at room temperature all the complexes exhibit intense fluorescence in solution as well in solid state at room temperature.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , , , , , , ,