Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1340585 | Polyhedron | 2008 | 7 Pages |
The synthesis, crystal structure and magnetic properties are reported for the new bimetallic compound {(CuL1)[Co(NCS)4]} where L1 = N-rac-5,12-dimethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene. The complex forms a one-dimensional zig-zag coordination polymer along the crystallographic c axis, with Co(II) and Cu(II) ions connected via thiocyanate bridges. The Co(II) centre in the [Co(NCS)4] fragment approximates a distorted tetrahedral symmetry. The Cu(II) geometry is a distorted tetragonal bipyramid with the apical position occupied by the bridging thiocyanate ligand and the basal ones by the four nitrogen atoms from the macrocyclic ring. The polymer chain nearest Cu(1)⋯Co(1) distances are 6.4152(9) and 6.0988(9) Å and the nearest Cu(1)⋯Co(1) interchain distances are 6.8609(9), 6.9628(9) and 6.0336(10) Å. The magnetization measurements for the examined compound have been carried out over the range 1.8–300 K. This data suggest ferromagnetic interactions through the thiocyanate bridge.
Graphical abstractThe synthesis, crystal structure and magnetic properties are reported for the new bimetallic compound {(CuL1)[Co (NCS)4]} where L1 = N-rac-5,12-dimethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene. The complex forms a one-dimensional zig-zag coordination polymer along the crystallographic c axis, with Co(II) and Cu(II) ions connected via thiocyanate bridges. The Co(II) centre in the [Co(NCS)4] fragment approximates a distorted tetrahedral symmetry. The Cu(II) geometry is a distorted tetragonal bipyramid with the apical position occupied by the bridging thiocyanate ligand and the basal ones by the four nitrogen atoms from the macrocyclic ring. The polymer chain nearest Cu(1)⋯Co(1) distances are 6.4152(9) and 6.0988(9) Å and the nearest Cu(1)⋯Co(1) interchain distances are 6.8609(9), 6.9628(9) and 6.0336(10) Å. The magnetization measurements for the examined compound have been carried out over the range 1.8–300 K. This data suggest ferromagnetic interactions through the thiocyanate bridge.Figure optionsDownload full-size imageDownload as PowerPoint slide