Article ID Journal Published Year Pages File Type
13418711 Advanced Engineering Informatics 2020 7 Pages PDF
Abstract
With rapid advances in building information modeling (BIM), a huge amount of BIM components has been built to increase design efficiency. Meanwhile, finding the appropriate BIM component in the huge library has become a challenge. Besides the methods of case-based reasoning (CBR) or multi-attribute decision model (MADM), the probabilistic matrix factorization (PMF) method of a recommendation system can be an efficient alternative. However, the user behavior patterns (i.e., the rating matrices) are changing with time to influence the recommendation precision. Therefore, this study aims to enhance the dynamic recommendation ability for BIM components by proposing a hybrid probabilistic matrix factorization method (PMF-GMn). The latent user preference matrix and the latent BIM component feature matrix can be generated by the PMF method from the rating matrix. Then, the predicted latent matrices can be obtained by the optimized grey model. Finally, the predicted latent matrices are further combined into the predicted rating matrix to recommend the appropriate BIM components. An illustrative example of the prefabricated building design is used to demonstrate the feasibility. This experiment is implemented by inviting twenty users to use the proposed SharePBIM platform for five months. The statistical results indicated that PMF-GMn can provide better performance than PMF in both two criteria of RMSE and [email protected]k.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,