Article ID Journal Published Year Pages File Type
13430935 Discrete Applied Mathematics 2019 10 Pages PDF
Abstract
It is known that any vertex cover of the generalized Petersen graph P(n,k) has size at least n. Behsaz, Hatami and Mahmoodian characterized such graphs with minimum vertex cover numbers n and n+1, and those with k≤3. For k≥4 and n≥2k+2, we prove that if the 2-adic valuation of n is less than or equal to that of k, then the minimum vertex cover number of P(n,k) equals n+2 if and only if n∈{2k+2,3k−1,3k+1}.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,