Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1400914 | Journal of Molecular Structure | 2016 | 11 Pages |
•Multi-component crystals consisting of acridinone/thioacridinone and solvent moiety have been characterized.•Different theoretical approaches were undertaken to asses the intermolecular interactions within the crystal.•Coulombic and specific interactions stabilize crystal lattice and influence mutual arrangement of crystal packing.
A single crystal X-ray analysis of two multi-component crystals consisting of an acridinone/thioacridinone moiety and a solvent moiety – water and ammonia (1 and 2), respectively, was carried out to determine the crystal structures of obtained crystals. A theoretical approach was undertaken – using the DFT method, lattice energies calculations and Hirshfeld surfaces (HS) – to qualitatively and quantitatively assess the intermolecular interactions within the crystal. HS analysis was showed that the H⋯H, C⋯H/H⋯C and C⋯C contacts for both structures (altogether 81.6% of total Hirshfeld surface area for 1 and 79.3% for 2) and the O⋯H/H⋯O (14.3%) for 1 and the S⋯H/H⋯S (15.2%) contacts for 2 were the characteristic intermolecular contacts in the related crystal structures. Using a computational methods were confirmed that the main contribution to the stabilization of the crystal lattice of compound 1 comes from the Coulombic interactions, whereas in compound 2 electrostatic and van der Waals appear to have similar contribution to the crystal lattice energy. Theoretical calculations of the investigated compounds have also allowed to determine the energy of a single specific intermolecular interaction.
Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide