Article ID Journal Published Year Pages File Type
1401421 Journal of Molecular Structure 2016 7 Pages PDF
Abstract
As a primary decomposition process in terrestrial biosystems, biodegradation has been extensively studied with regard to its impact on soil organic matter transformation. However, the biotransformation of soil microbial biomass (a primary source of soil organic carbon) remains poorly understood, and even less is known about the fate of microbial-derived carbon under photodegradation. Here, we combine infrared and diffusion editing NMR spectroscopies to provide molecular-level information on the photodegradation of major biochemical components in soil microbial biomass and leachates over time. Results indicate a considerable enrichment in aliphatic components, presumably polymethylenic-C [(C-H2)n] and the simultaneous loss of carbohydrate and protein structures in the biomass. An immediate conclusion is that photodegradation increased the conversion of macromolecular carbohydrates and proteins to smaller components. However, further analysis reveals that macromolecular carbohydrates and proteins may be more resistant to photodegradation than initially thought and are found in the leachates. Although attenuated, there is also evidence to suggest that some aliphatic structures persist in the leachates. Overall, the photodegradation pathway reported here is remarkably similar to that of biodegradation, suggesting that under rapidly expanding anthropogenic land disturbances, photodegradation could be an important driver of the transformation of microbial-derived organic matter in terrestrial biosystems.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, ,