Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1404264 | Journal of Molecular Structure | 2008 | 14 Pages |
A systematic structural investigation of R-phenyl-substituted 2,2′:6′,2″-terpyridines, a family of mono- and bifunctional charge transfer (CT)-operated fluorescent reporters for protons and metal ions, is presented. These molecules are equipped with non-binding and analyte coordinating donor substituents R (R = CF3, H, OMe, OH, DMA, A15C5 equaling monoaza-15-crown-5) of various donor strength and display CT-controlled spectroscopic properties and communication of analyte–receptor interactions. The crystal structures of the neutral fluorescent probes are compared to the structures of their terpyridine-alkylated or -protonated counterparts that represent model systems for acceptor protonation or cation coordination. The aim is here a better understanding of the complexation-induced structural and spectroscopic changes and the identification of common packing motifs of bpb-R thereby taking into account the importance of terpyridine building blocks for the construction of supramolecular systems and coordination arrays revealing π–π interactions.