Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1404784 | Journal of Molecular Structure | 2016 | 7 Pages |
•The novel 1,5-diaryl tetrazole 3 as a COX-2 inhibitor was synthesized.•The crystal structure of tetrazole 3 was discussed.•The docking studies of 3 and celecoxib in the active site of COX-2 were conducted.•The in vitro bioassay results of 3 as COX-1 and COX-2 inhibitors were reported.
The synthesis of N-[(dimethylamino)methylidene]-4-[1-(4-nitrophenyl)-1H-tetrazol-5-yl]benzenesulfonamide (3) has been easily approached and the structure has been determined by X-ray crystallography. Tetrazole 3 crystallizes in the monoclinic space group C2/c, with the cell parameters determined as a = 35.5408 (18) Å, b = 7.6972 (4) Å, c = 13.0700 (7) Å3, β = 96.8598 (6)°, V = 3549.9 (3) Å3, and Z = 8. Its structure refines to R1 = 0.0341 (for 2986 observed reflections [I ≥ 2σ(I)]) and wR2 = 0.0990 (for all 3637 unique reflections). The aryl rings at the 1- and 5-positions show no conjugation to the tetrazole group, and the [(Dimethylamino)methylene]aminosulfonyl (Me2NCHNSO2) group is disordered, with the two disorder conformers being related by a pseudo mirror plane. In the crystal, intermolecular interactions between adjacent molecule of 3 are dominated by weak (2.4–2.7 Å) CeH…O and CeH…N hydrogen bonds. The molecular docking studies were carried out to understand the interaction of compound 3 within the active site of the cyclooxygenase-2 enzyme, followed by a comparison study with the celecoxib drug as a reference compound. The in vitro bioassay studies of tetrazole 3 toward cyclooxygenase-1 and cyclooxygenase-2 enzymes showed that compound 3 has no inhibition potency for either enzyme.
Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide