Article ID Journal Published Year Pages File Type
1405536 Journal of Molecular Structure 2014 10 Pages PDF
Abstract

•The conformation, population, and NMR chemical shift have been determined.•Thiepane derivatives have complex conformers due to the flexible structure.•Boltzmann weighting factor have been used for determining major conformers.•MSTD method has been used to compare with experimental results.•Intramolecular hydrogen bond determined the conformation of thiepanes.

DFT/B3LYP/6-311++G(d,p) calculations have been performed to obtain optimized structures for fourteen conformers of (3R,4R,5R,7S)-7-(hydroxymethyl)thiepane-3,4,5-triol. These conformers are considered as the twist-chair (TC) and twist-boat (TB) conformations. Among all conformers, the TCS5 and TCS6 conformers appear to be the most energetically stable since they contain an intramolecular hydrogen bond between hydroxyl group at C(8) and S atom. Boltzmann weighting factor analysis provides valuable information on the population of the fourteen conformers, including both the TC and TB conformations. The analysis results demonstrate that the TCS2, TCS5, and TCS6 conformers provide a major population contribution with Boltzamann weighting factors larger than 7% as compared to other conformers. For these conformers of (3R,4R,5R,7S)-7-(hydroxymethyl)thiepane-3,4,5-triol, the GIAO/HF, GIAO/DFT/OPBE, GIAO/DFT/B3LYP and GIAO/DFT/mPW1PW91 calculations with the 6-311++G(d,p), 6-311+G(2d,p), cc-pVDZ and cc-pVTZ basis sets were used to obtain their 13C NMR chemical shifts. The calculated 13C NMR chemical shifts of the TCS2, TCS5, and TCS6 conformers show a close correlation with experimental data, within 2.4–3.0 ppm of MAE values. The experimental 13C NMR chemical shifts represent a combination of contributions from all the conformers. In our investigation, the calculated 13C NMR chemical shifts of the mixture of (3R,4R,5R,7S)-7-(hydroxymethyl)thiepane-3,4,5-triol conformers display a remarkable MAE and RMS improvement comparing to those for each individual conformer. The most appropriate calculation method and basis set to evaluate the theoretical 13C NMR chemical shifts for these conformers are OPBE/6-311+G(2d,p). Calculated results represent that the conformation of (3R,4R,5R,7S)-7-(hydroxymethyl)thiepane-3,4,5-triol can be determined by the intramolecular hydrogen bond which could be simulated by the 13C NMR chemical shift calculation.

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , ,