Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1408719 | Journal of Molecular Structure | 2013 | 11 Pages |
•The unit-cell of PQC is built by two molecules of different conformations.•DFT/B3LYP gives better agreement than HF method.•MCF7 cell line is more sensitive to PQC than HCT and HEPG2.•PQC has several sites for electrophilic attack.•The inclusion of solvation to NMR calculations is essential for acidic protons.
In the present work, comprehensive theoretical and experimental structural studies on 2-chloro-3-formyl-9,10-dimethoxy-4-oxo-6,7-dihydro-4H-pyrido[2,1-a]isoquinoline-1-carbonitrile (PQC) have been performed using spectral methods and X-ray crystallography. PQC crystallizes in monoclinic crystal system of P21/c space group with a = 23.5106 (6) Å, b = 17.7940 (4) Å, c = 7.2843 (2) Å and β = 90.1421 (9)°. The unit-cell is built by two molecules of different conformations. The two molecules are not coplanar and they are linked to each other through double intermolecular hydrogen bonds of different strength. Optimized molecular structure and harmonic vibrational frequencies have been investigated at DFT/B3LYP and HF level of theory combined with 6-31G(d) basis set. Stability, arises from hyperconjugative interactions, charge delocalization and H-bond, has been analyzed using natural bond orbital (NBO) analysis. Electronic structures were discussed by time-dependent density functional theory. Descriptions of frontier molecular orbitals and the relocation of the electron density were determined. 1H NMR chemical shifts were computed by using Gauge-invariant atomic orbital method in both gas and DMSO media, using the polarizable continuum model. The cytotoxicity assay was performed against three-cell lines, breast cancer (MCF7), colon Carcinoma (HCT) and human heptacellular Carcinoma (HepG2).