Article ID Journal Published Year Pages File Type
1408778 Journal of Molecular Structure 2013 5 Pages PDF
Abstract

IR spectra changes of the xV2O5(1 − x)[0.8P2O5⋅0.2Bi2O3] glass system with 0 ⩽ x ⩽ 50 mol% show that vanadium oxide acts as a network modifier at low concentration (x ⩽ 5 mol%), affecting especially the Bi2O3 network. In the same time the phosphate groups (structures) impose their presence by themselves, fact which is illustrated by the increasing of the intensity of characteristic 910, 1040, 1230 cm−1 bands. The IR bands belonging to the phosphate groups are strongly reduced for x ⩾ 10 mol% due to the phosphate network depolymerization and to the appearance of new vibrations characteristic for POV and VOV linkages, showing the network former role of V2O5. In the same time the changes observed in the ESR spectra of these glasses are explained supposing the superposition of two signals, one with a well-resolved hyperfine structure typical for isolated V4+ ions and a broad line characteristic for clustered ions. The line width dependence versus V2O5 content shows that dipole–dipole interactions exist between vanadium ions until x = 5 mol% and the superexchange interactions prevail at high content (x ⩾ 10 mol%).

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , ,