Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1408877 | Journal of Molecular Structure | 2016 | 7 Pages |
•Three new silver (I) complexes have been synthesized and characterized.•The change of polyphosphine ligands results in the formation of different types of polynuclear structures.•Intermolecular weak interactions may be the key of construction of 1D infinite chains or 2D networks.
Based on ligands of N,N-bis((diphenylphosphino)methyl)benzenamine (pba), 4-(4-(bis((diphenylphosphino)methyl)amino)benzyl)-N-((diphenylphosphino)methyl)benzenamine (dptp) and N,N,N′,N′-tetrakis((diphenylphosphino)methyl)benzene-1,4-diamine (pbaa), three new silver(I) complexes [Ag(pba)2]ClO4 (1), [Ag2(dptp)2](ClO4)2·2DMF (2) and [Ag4(pbaa)(NO3)4]n (3), have been synthesized and characterized. Structural analysis reveals that all of these complexes contain the 1D infinite chains, with different variations in the weak interactions. Complexes 1 and 2 are interconnected by intermolecular C-H⋯π interactions to form 1D infinite chains and 2D networks, and the ordered-layer-lattic ClO4− and DMF in 2 are between 2D networks. For 3, the pbaa ligand adopts a tetradentate coordination mode to link two adjacent stair-like [Ag4O4] cores resulting in a 1D chain, respectively, with Ag⋯C, N-O⋯π and C-H⋯π interactions. All these show that phosphine ligands play an important role in the construction of interesting topological structures with different types of the weak interactions.
Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide