Article ID Journal Published Year Pages File Type
14177 Biomolecular Engineering 2006 18 Pages PDF
Abstract

The meaning of the word affinity in the context of protein separation has undergone evolutionary changes over the years. The exploitation of molecular recognition phenomenon is no longer limited to affinity chromatography modes. Affinity based separations today include precipitation, membrane based purification and two-phase/three-phase extractions. Apart from the affinity ligands, which have biological relationship (in vivo) with the target protein, a variety of other ligands are now used in the affinity based separations. These include dyes, chelated metal ions, peptides obtained by phage display technology, combinatorial synthesis, ribosome display methods and by systematic evolution of ligands by exponential enrichment (SELEX). Molecular modeling techniques have also facilitated the designing of biomimetic ligands. Fusion proteins obtained by recombinatorial methods have emerged as a powerful approach in bioseparation. Overexpression in E. coli often result in inactive and insoluble inclusion bodies. A number of interesting approaches are used for simultaneous refolding and purification in such cases. Proteomics also needs affinity chromatography to reduce the complexity of the system before analysis by electrophoresis and mass spectrometry are made. At industrial level, validation, biosafety and process hygiene are also important aspects. This overview looks at these evolving paradigms and various strategies which utilize affinity phenomenon for protein separations.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, ,