Article ID Journal Published Year Pages File Type
14302 Biotechnology Advances 2014 13 Pages PDF
Abstract

Nucleic acids have proven to be a very suitable medium for engineering various nanostructures and devices. While synthetic DNAs are commonly used for self-assembly of nanostructures and devices in vitro, functional RNAs, such as ribozymes, are employed both in vitro and in vivo. Allosteric ribozymes have applications in molecular computing, biosensoring, high-throughput screening arrays, exogenous control of gene expression, and others. They switch on and off their catalytic function as a result of a conformational change induced by ligand binding. Designer ribozymes are engineered to respond to different effectors by in vitro selection, rational and computational design methods. Here, I present diverse computational methods for designing allosteric ribozymes with various logic functions that sense oligonucleotides or small molecules. These methods yield the desired ribozyme sequences within minutes in contrast to the in vitro selection methods, which require weeks. Methods for synthesis and biochemical testing of ribozymes are also discussed.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
,