Article ID Journal Published Year Pages File Type
1430812 Materials Science and Engineering: C 2008 14 Pages PDF
Abstract

Stem cells have been recognized as a promising alternative to somatic cells in the application of cell therapy owing to their potential to renew themselves through cell division and to differentiate into a wide range of specialized cell types. In order to maintain the phenotype expression and differentiated functions of stem cells, the simulated natural environment of the biomimetic material support has to provide the appropriate signals to the attached cells. Scaffolds with biomimetic components and nanotexture can provide chemical, physical as well as spatial cues that are essential to mimic natural tissue growth. Moreover, the plasticity of stem cells provides the basic possibility for multiple-tissue engineering using a certain type of stem cells. Progress in the understanding of self-renewal and directed differentiation of stem cells on biomimetic materials will lead scientists to propose the possibility of cell-based therapies to treat diseases, including the use of stem cells in tissue engineering. In this review paper, we will discuss the current state of the art and future perspectives on stem cells and biomimetic materials strategies for tissue engineering.

Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , ,