Article ID Journal Published Year Pages File Type
14366 Biotechnology Advances 2011 8 Pages PDF
Abstract

Antimicrobial peptides (AMPs) are next generation antibiotics which will make excellent coating agents for a myriad of devices because they are far less susceptible to the development of pathogen resistance compared to conventional antibiotics, exhibit rapid and broad-spectrum killing profiles, and are effective at low concentrations. These advantages, however, are compromised upon AMP tethering to solid supports. The effects of peptide-tethering strategies in governing AMP orientation, surface density, flexibility, and activity are reviewed. Understanding AMP structure–function relationship in the tethered conformation will enable rational improvements of immobilisation parameters. Foreseeable challenges in the development of AMP-coated devices such as microbial accumulation on implant surface and the lack of direct biomolecular structure and orientation data of peptides on surfaces are also discussed, and solutions to address these roadblocks are also proposed.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, ,