Article ID Journal Published Year Pages File Type
1461 Acta Biomaterialia 2012 11 Pages PDF
Abstract

A general method for producing low-fouling biomaterials on any surface by surface-initiated grafting of polymer brushes is presented. Our procedure uses radiofrequency glow discharge thin film deposition followed by macro-initiator coupling and then surface-initiated atom transfer radical polymerization (SI-ATRP) to prepare neutral polymer brushes on planar substrates. Coatings were produced on substrates with variable interfacial composition and mechanical properties such as hard inorganic/metal substrates (silicon and gold) or flexible (perfluorinated poly(ethylene-co-propylene) film) and rigid (microtitre plates) polymeric materials. First, surfaces were functionalized via deposition of an allylamine plasma polymer thin film followed by covalent coupling of a macro-initiator composed partly of ATRP initiator groups. Successful grafting of a hydrophilic polymer layer was achieved by SI-ATRP of N,N′-dimethylacrylamide in aqueous media at room temperature. We exemplified how this method could be used to create surface coatings with significantly reduced protein adsorption on different material substrates. Protein binding experiments using labelled human serum albumin on grafted materials resulted in quantitative evidence for low-fouling compared to control surfaces.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (78 K)Download as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , ,