Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1466070 | Composites Part A: Applied Science and Manufacturing | 2014 | 7 Pages |
This study numerically simulates strain-rate dependent transverse tensile failure of unidirectional composites. The authors’ previous study reported that the failure mode depends on the strain rate, with an interface-failure-dominant mode at a relatively high strain rate and a matrix-failure-dominant mode at relatively low strain rate. The present study aims to demonstrate this failure-mode transition by a periodic unit-cell simulation containing 20 fibers located randomly in the matrix. An elasto-viscoplastic constitutive equation that involves continuum damage mechanics regarding yielding and cavitation-induced brittle failure is used for the matrix. A cohesive zone model is employed for the fiber–matrix interface, considering mixed-mode interfacial failure. For the results, the relationship between failure modes and the strain rate is consistent with the authors’ previous studies.