Article ID Journal Published Year Pages File Type
14708 Biotechnology Advances 2010 10 Pages PDF
Abstract

Cheese whey, the main dairy by-product, is increasingly recognized as a source of many bioactive valuable compounds. Nevertheless, the most abundant component in whey is lactose (ca. 5% w/v), which represents a significant environmental problem. Due to the large lactose surplus generated, its conversion to bio-ethanol has long been considered as a possible solution for whey bioremediation. In this review, fermentation of lactose to ethanol is discussed, focusing on wild lactose-fermenting yeasts, particularly Kluyveromyces marxianus, and recombinant Saccharomyces cerevisiae strains. The early efforts in the screening and characterization of the fermentation properties of wild lactose-consuming yeasts are reviewed. Furthermore, emphasis is given on the latter advances in engineering S. cerevisiae strains for efficient whey-to-ethanol bioprocesses. Examples of industrial implementation are briefly discussed, illustrating the viability of whey-to-ethanol systems. Current developments on strain engineering together with the growing market for biofuels will likely boost the industrial interest in such processes.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , ,