Article ID Journal Published Year Pages File Type
14728 Biotechnology Advances 2009 5 Pages PDF
Abstract

A continuous stirred-tank reactor was used as an anaerobic sludge system and the hydrogen production capabilities of three typical fermentations, in terms of specific hydrogen production rates, were investigated under the same hydraulic retention times (8 h) and influent chemical oxygen demand (5000 mg/L) at 35 °C. The reactor was continuously fed with diluted molasses, while the pH and oxidation reduction potential in the reactor were regulated to control the type of fermentation. The specific hydrogen production rate of the anaerobic sludge reached 2.96 mol/kg mixed liquid volatile suspended solid (MLVSS)/day, (mol•kg MLVSS− 1 d− 1), in ethanol-type fermentation, while 0.57 mol·kg MLVSS− 1 d− 1 in butyric acid-type fermentation, and 0.022 mol·kgMLVSS− 1 d− 1 in propionic acid-type fermentation. The hydrogen production capability of ethanol-type fermentation was 4.11 times greater than that of butyric acid-type fermentation and 148 times that of propionic acid-type fermentation.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , ,