Article ID Journal Published Year Pages File Type
14734 Biotechnology Advances 2009 6 Pages PDF
Abstract

The technology associated with indirect biomass liquefaction is currently arousing increased attention, as it could ensure a supply of transportation fuels and reduce the use of petroleum. The characteristics of biomass–oxygen gasification in a bench-scale laminar entrained-flow gasifier were studied in the paper. Experiments were carried out to investigate the influence of some key factors, including reaction temperature, residence time and oxygen/biomass ratio, on the gasification. The results indicated that higher temperature favored H2 and CO production. Cold gas efficiency was improved by > 10% when the temperature was increased from 1000 to 1400 °C. The carbon conversion increased and the syngas quality was improved with increasing residence time. A shorter residence resulted in incomplete gasification. An optimal residence time of 1.6 s was identified in this study. The introduction of oxygen to the gasifier strengthened the gasification and improved the carbon conversion, but lowered the lower heating value and the H2/CO ratio of the syngas. The optimal oxygen/biomass ratio in this study was 0.4. The results of this study will help to improve our understanding of syngas production by biomass high-temperature gasification.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , ,