Article ID Journal Published Year Pages File Type
1474941 Journal of the European Ceramic Society 2010 6 Pages PDF
Abstract

Laser surface melting has been applied to near eutectic NiO–YSZ sintered ceramics. The objective is to generate a functional gradient composite material with graded microstructure and composition. At low solidification rates the resultant material has a graded composition, with a severe NiO segregation towards the surface. A thick NiO layer whose thickness depends on the travelling speed is formed. Below this layer the microstructure is eutectic like with composition varying with depth. In contact with the ceramic, excess YSZ coming from the hypereutectic composition forms an almost continuous YSZ layer. The thickness of both segregated layers, NiO and YSZ can be controlled by traverse speed. Thickness decreases as travelling speed increases until a limiting travelling rate of 110 mm/h, at which no more segregation is found. Possible causes to explain the relevant NiO segregation towards the surface are discussed.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,