Article ID Journal Published Year Pages File Type
1479828 Journal of Materials Research and Technology 2016 8 Pages PDF
Abstract

The flow-stress behavior of an extruded aluminum alloy has been studied by conducting a set of warm and hot compression tests. The compression tests were carried out in the temperature range of 373 K–773 K and strain rates of 0.001, 0.01 and 0.1 s−1, up to a strain of 0.5. Based on the results obtained from these tests, a mathematical model was obtained to predict flow stress for a given strain. The effect of temperature and strain rate on deformation behavior was ascertained by determining the Zener–Hollomon parameter. The influence of strain has been incorporated by employing an Arrhenius-type constitutive equation, considering the related material constants as functions of strain. The comparison of results indicated good agreement between the predicted and measured flow-stress values in the relevant temperature range. The correlation coefficient and average absolute relative error of the model were found to be 0.9965 and 4.26% respectively confirming good accuracy.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, ,