Article ID Journal Published Year Pages File Type
1480219 Journal of Non-Crystalline Solids 2016 9 Pages PDF
Abstract

•A new binary glass system based on Pb2P2O7-Nb2O5 is presented as a potential material for photonic applications;•These glasses show high linear and nonlinear refractive indexes, unusual for phosphate glasses.•Due to the high thermal stability against crystallization of 225 °C and to highly refraction indexes, they are potential glasses for nonlinear optical fibers and waveguides.•Multimode step index optical fiber was produced with composition containing 40 mol% of Nb2O5 and their optical losses at visible and near-infrared were determined.

In this study we present the production and characterization of Pb2P2O7–Nb2O5 glasses and optical fibers. The dependence of Nb2O5 content on thermal, structural and optical properties were investigated by thermal analysis (DSC), Raman spectroscopy, UV–Visible absorption, M-Lines and Z-scan techniques. Glass transition temperature (Tg) increased linearly with Nb2O5 content up to 60 mol%, while thermal stability against crystallization (ΔT) reached a maximum value of 225 °C at 40 mol% of Nb2O5. Raman spectra showed a significant structural change by the insertion of NbO6 octahedral units in the glass network. The increase of Nb2O5 concentration shifts the glasses absorption edge to lower energies, and also increases the linear refractive indexes (n0) due to the high polarizability of niobium atoms and formation of non-bridging oxygen. Similarly to n0, an increase in the positive values of nonlinear refractive indexes was observed using Z-Scan technique with increase of Nb2O5 content, based on structural changes caused by the replacement of Pb2P2O7 instead Nb2O5. The average of n2 values at 500–1500 nm raised from 2.2 × 10− 19 to 3.8 × 10− 19 m2/W, when the Nb2O5 content was increased from 10 to 60 mol%. Lastly, a core-cladding preform was produced by suction method and the optical fiber drawn. The sample containing 40 mol% of Nb2O5 was used for presenting the highest thermal stability against crystallization and n0 values > 2 from green to near-infrared wavelengths. Multimode step index fiber with good core circularity and concentricity was produced and the optical losses were determined by cut-back method at visible and near-infrared ranges.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , , ,