Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1482194 | Journal of Non-Crystalline Solids | 2009 | 7 Pages |
Mesoporous, tungsten-containing molecular sieve (W-SBA-15) composites were successfully synthesized via one-step hydrothermal processing using tetraethyl orthosilicate (TEOS) as the silica precursor, sodium tungstate as the tungsten precursor, and pluronic P123 triblock polymer (EO20PO70EO20, Mav = 5800) as a structure-directing reagent. The influence of various synthesis factors, such as TEOS/sodium tungstate (Si/W) molar ratios, stirring solution temperatures, TEOS pre-hydrolysis time, and crystallization temperatures, on the structure of the W-SBA-15 composite were investigated. The prepared materials were characterized by using X-ray diffraction (XRD), infrared spectroscopy (IR), diffuse reflectance ultraviolet–visible spectroscopy (DR UV–vis), scanning electron microscopy (SEM), and nitrogen adsorption–desorption measurements. The results showed that all the W-SBA-15 composite materials retained the mesopore structure of SBA-15 and the tungsten oxide species successfully substituted silica in the framework.