Article ID Journal Published Year Pages File Type
1482246 Journal of Non-Crystalline Solids 2009 10 Pages PDF
Abstract

We investigate the network structures of LaSiAlO glasses by 29Si magic-angle-spinning (MAS) nuclear magnetic resonance (NMR). Their compositions span most of the glass-forming region of the ternary La2O3Al2O3SiO2 system at 1600 °C. The 29Si NMR resonances narrow and become progressively deshielded when Al substitutes for Si in the network, as well as for increasing La-content of the glass, which leads to network depolymerization. We compare experimental and calculated center of gravities of the 29Si NMR peaks, the latter generated from different simplified models for the distributions of Al and Si as well as bridging oxygen (BO) and non-bridging oxygen (NBO) atoms over the networks. The data do not permit accurate quantifications and may only be interpreted in limiting scenarios. However, they indicate that both distributions are essentially randomized, implying a clear deviation of the Al/Si ordering from that according to a Loewenstein Al-avoidance, coupled with a nearly uniform partitioning of the NBO atoms between Al and Si tetrahedra.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,