Article ID Journal Published Year Pages File Type
1482399 Journal of Non-Crystalline Solids 2010 5 Pages PDF
Abstract

Experimental EPR spectra in several modified vanadate glass systems reveal hyperfine structure (hfs) lines whose widths vary with the molar ratio of modifier to vanadium pentoxide, R. In the RNa2O.V2O5 system, for example, hfs lines show no resolution at low R values (near 0.1); by contrast, these lines exhibit dramatic narrowing as R approaches 0.5. In the model proposed here, this narrowing is due to an increase in hopping time for small polarons associated with V4+ ions in these systems. Increases in polaron hopping times are accompanied by increases in electron spin-spin relaxation times T2's, and, an associated narrowing of EPR linewidths. Experiments confirm that spectral widths are limited by electron T2's due to the fact that EPR linewidths do not vary with temperature down to 4.2 K. Resolved spectra in RNa2O.V2O5 at R = 0.5 reveal a hyperfine coupling parameter of 0.0177 ± 0.0008 T, corresponding to an upper-limit polaron hopping frequency of 487 ± 20 MHz. By similar analyses, the systems of RCaO.V2O5, RBaO.V2O5, and RLi2O.V2O5 exhibit comparable polaron hopping frequencies limits of 480 ± 20 MHz, 469 ± 20 MHz, and 468 ± 20 MHz, respectively, when R is near 1.0. In addition to the relaxation effects discussed here, results of modeling of resolved spectra to obtain hyperfine coupling constants A|| and A┴, and g┴ values g|| and g┴ are presented and discussed.

Keywords
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , ,